Hydrogen Bond Studies. XLIV.* Neutron Diffraction Study of Acetic Acid \dagger

By Per-Gunnar Jönsson \ddagger
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

(Received 15 April 1970 and in revised form 1 November 1970)

Abstract

The crystal structure of acetic acid has been refined from three-dimensional neutron diffraction data recorded at $-140^{\circ} \mathrm{C}$. The crystals are orthorhombic, space group Pna 2_{1}, with four molecules of $\mathrm{CH}_{3} \mathrm{COOH}$ in a unit cell of dimensions $a=13 \cdot 225$ (9), $b=3 \cdot 963$ (3), $c=5 \cdot 762$ (3) \AA. The acetic acid molecules are connected by hydrogen bonds to form infinite chains. The carbonyl oxygen accepts a hydrogen bond from the hydroxyl group of a neighboring molecule, the hydrogen bond lengths are $\mathrm{H} \cdots \mathrm{O} 1.642$ (13) and $\mathrm{O} \cdots \mathrm{O} 2 \cdot 631(8) \AA$, the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle is $164 \cdot 8^{\circ}$. The intramolecular bond distances are $\mathrm{C}-\mathrm{O}$ 1.321 (7), $\mathrm{C}=\mathrm{O} 1.206$ (8), $\mathrm{C}-\mathrm{C} 1.501$ (7), $\mathrm{O}-\mathrm{H} 1.011$ (15) and the mean $\mathrm{C}-\mathrm{H}$ distance is 1.060 (10) \AA. The above distances were not corrected for thermal motion.

Introduction

The crystal structure of acetic acid was determined by Jones \& Templeton (1958) (referred to as JT below) from X-ray diffraction data recorded at $+5^{\circ} \mathrm{C}$. In a study concurrent with the work reported here, Nahringbauer (1970) has carried out a redetermination of the structure at $+5^{\circ}$ and $-190^{\circ} \mathrm{C}$ using X-ray film data evaluated by an automatic film scanner. This paper reports the structure of acetic acid as studied by neutron diffraction at $-140^{\circ} \mathrm{C}$.

Crystal data

Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$. F.W. $60 \cdot 05$, m.p. $16 \cdot 6^{\circ} \mathrm{C}$.
Orthorhombic, $a=13.225$ (9), $\S b=3.963$ (3),
$c=5.762$ (3) \AA,
$V=302 \cdot 0 \AA^{3}$ at $-140^{\circ} \mathrm{C}$.
(Neutron radiation, $\lambda=0 \cdot 826$ (2) \AA).
$D_{m}^{-183}=1.326 \mathrm{~g} . \mathrm{cm}^{-3}$ (Bilz, Fischer \& Wünnenberg, 1930),
$Z=4$,
$D_{c}^{-140}=1 \cdot 321 \mathrm{~g} . \mathrm{cm}^{-3}$.
Space group Pna2 ${ }_{1}$.
Calculated neutron absorption coefficient: $1.80 \mathrm{~cm}^{-1}$.

Experimental

Water-free reagent-grade acetic acid was sealed in a thin-walled quartz tube. A single crystal was grown at a temperature near its melting point in a modified precession camera. The camera carried a tube for passing a stream of cold air parallel to the axis of the quartz tube. The acetic acid crystals had a tendency to grow

[^0]very rapidly in thin needles resulting in a number of differently oriented crystallites. Constant attention was therefore needed; as soon as a rapidly growing needle began to form it was remelted. The cylindrical single crystal finally obtained had a volume of $3.85 \mathrm{~mm}^{3}$; its radius was 0.60 mm . The quality of the crystal was checked by taking precession X-ray photographs using Mo Kradiation. The cell dimensions were found to be in reasonable agreement with the values of JT. With the crystal immersed in a cold bath, the goniometer head was transferred to the Brookhaven High Flux Beam Reactor. It was mounted on a four-circle neutron diffractometer equipped with the ALTA low-temperature apparatus (Rudman \& Godel, 1969). The temperature was maintained at $-140^{\circ} \pm 1^{\circ} \mathrm{C}$ by blowing a cold stream of nitrogen gas over the crystal. The crystal was aligned about an axis normal to the (211) planes. This direction coincided closely with the axis of the quartz tube. Ten reflections were carefully centered manually and their 2θ values recorded. Cell dimensions together with standard deviations were obtained by a leastsquares procedure, the results of which are given above. The neutron wavelength was 0.826 (2) \AA. The uncertainty in the wavelength was not included in the calculation of the standard deviations. However, it is reassuring to note the good agreement with the values of Nahringbauer (1970) when these values are interpolated to $-140^{\circ} \mathrm{C}$.

Intensity data were collected at $-140^{\circ} \mathrm{C}$ using the computer-controlled Multiple Spectrometer Control System (Beaucage, Kelley, Ophir, Rankowitz, Spinrad \& van Norton, 1966). Using a $\theta-2 \theta$ step scan technique a portion of reciprocal space extending out to $\sin \theta / \lambda=0.76 \AA^{-1}$ was examined. During the data collection it was noticed that certain reflections were considerably miscentered. This error could be traced to an unfavorably shaped goniometer head for which, in certain orientations, one of the arcs moved into the path of the cold stream. The uneven cooling which resulted caused a temporary missetting of the crystal. This source of error could not be completely avoided

Table 1. Final positional and thermal parameters for acetic acid
The positional parameters are given as fractional coordinates $\times 10^{4}$. The vibration tensor components (in $10^{4} \AA^{2}$) are defined as $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$. The second line given for each heavy atom parameter compares the neutron results with the X-ray results of Nahringbauer (interpolated to $-140^{\circ} \mathrm{C}$, see text). The value given first is Δ (defined as the interpolated X-ray parameter value minus the neutron parameter value) followed by $|\Delta| / \sigma$, where σ is the combined standard deviation (see text).

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{O}(1)$	1275 (5)	1096 (16)	0	268 (35)	322 (26)	244 (25)	-19 (22)	15 (31)	-109 (25)
	-10.2	$201 \cdot 1$		-511.4	-180.5	943.1	-90.4	-661.9	- 170.6
O(2)	2523 (4)	3850 (13)	1707 (15)	193 (30)	371 (25)	201 (18)	-44 (20)	3 (27)	-71 (28)
	81.8	-241.7	221 12	220.7	-441.3	$1275 \cdot 4$	- 291.3	120.4	-421.2
C(1)	1649 (4)	2978 (10)	1685 (14)	184 (25)	238 (16)	157 (15)	13 (16)	5 (23)	-36 (20)
	-30.7	-55 3.9	341.9	60.2	-993.5	1255	-130.6	-230.7	220.7
C(2)	884 (4)	3840 (13)	3519 (13)	288 (33)	281 (22)	252 (20)	-41 (20)	41 (22)	-73 (23)
	91.8	-281.6	-80.5	-461.2	$-300 \cdot 8$	$892 \cdot 8$	662.5	441.5	-170.5
H(1)	1820 (9)	511 (28)	-1163 (20)	359 (65)	427 (57)	269 (41)	15 (39)	- 102 (50)	-88 (39)
H(2)	1277 (13)	5102 (57)	4910 (25)	776 (114)	1046 (126)	419 (74)	- 320 (89)	168 (82)	-409 (86)
H(3)	327 (12)	5402 (62)	2786 (33)	636 (132)	1305 (165)	532 (83)	401 (133)	189 (82)	104 (95)
H(4)	531 (19)	1683 (39)	4207 (46)	1432 (177)	418 (84)	944 (123)	- 189 (91)	547 (141)	-30 (82)

since there was no simple means of restricting the φ motion of the diffractometer. Instead, the affected reflections were later identified by inspection of the recorded peak profiles and removed from the data set. About 100 reflections had to be rejected for this reason. Due to early shut-down of the reactor no reflections with h larger than 13 were recorded.

The data were corrected for background and assigned standard deviations based on Poisson counting statistics. Values of F^{2} and $\sigma_{\text {count }}\left(F^{2}\right)$ were then calculated by applying the Lorentz factor and absorption corrections to the values of I and $\sigma(I)$. The cylindrical shape of the crystal was represented approximately by 38 boundary planes in the calculation of the absorption correction. The resulting transmission factors fell in the range $0.81-0.84$. The linear absorption coefficient of $1.80 \mathrm{~cm}^{-1}$ was calculated using a value of 34 barns for the incoherent scattering cross-section for hydrogen.

Location of the hydrogen atoms and refinement

A three-dimensional difference map, for which the calculated structure factors were based on the parameters given by JT, revealed the positions of the hydrogen atoms. The structure was refined using the full-matrix least-squares program LINUS. The function minimized was $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. Only reflections with F^{2} values larger than $\sigma\left(F^{2}\right)$ were included; the total number of reflections was 316 . Each reflection was assigned a weight w inversely proportional to the estimated variance of the observation

$$
w^{-1}=\sigma^{2}(F)=\sigma^{2}\left(F^{2}\right) / 4 F^{2}
$$

and

$$
\sigma^{2}\left(F^{2}\right)=\sigma_{\text {count }}^{2}\left(F^{2}\right)+k^{2} F^{4}
$$

where k was $0 \cdot 10$ and $\sigma_{\text {count }}^{2}$ was based on counting statistics alone.

The parameters refined were 23 positional parameters, 48 anisotropic thermal parameters and an overall scale factor. No correction for secondary extinction was needed. In the last cycle of least-squares refinement no
parameter shifted by more than $0 \cdot 1 \sigma$; the final agreement factors were

$$
R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right|=0.075
$$

and

$$
R_{w}=\left[\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma w\left|F_{o}\right| 2\right]^{1 / 2}=0.092 .
$$

Table 2. Observed and calculated neutron structure amplitudes for acetic acid

The four columns are, in order, the indices k and $l, 100\left|F_{o}\right|$ and $100\left|F_{c}\right|$ (in units of $10^{-12} \mathrm{~cm}$).

The error in an observation of unit weight was $1 \cdot 53$. The final positional and thermal parameters are presented in Table 1. The observed and calculated structure factor amplitudes are listed in Table 2; only those observations used in the refinement are included in the Table. The neutron scattering lengths used were $\bar{b}_{\mathrm{O}}=$ $0.58, \bar{b}_{\mathrm{C}}=0.665, \bar{b}_{\mathrm{H}}=-0.372\left(10^{-12} \mathrm{~cm}\right)$.

Computer programs

Most of the calculations were carried out on the CDC 6600 computer at the Brookhaven National Laboratory. The following programs from the BNL crystallographic program library were used: CELDIM for least-squares calculations of cell parameters from observed 2θ values, $D A T A P H$ for absorption correction, FORDAP for Fourier calculations, LINUS for least-squares refinement (Coppens \& Hamilton, 1970), NANOVA for analysis of the weighting scheme at the end of the least squares refinement, and ORFFE (Busing, Martin \& Levy, 1964) and ORTEP (Johnson, 1965) for structure description.

Comparison of neutron and X-ray parameters

The only striking discrepancy which appears from a comparison of bond lengths and angles found by Nahringbauer and JT arises in the angle $\mathrm{C}(1)-\mathrm{O}(2) \cdots \mathrm{O}(1)$. The value of JT has since, however, been shown to be incorrectly calculated; it should be 135° rather than 144°. A comparison of the positional and thermal parameters for the heavy atoms with the results of Nahringbauer is included in Table 1. The X-ray structure
determination was carried out at both +5 and $-190^{\circ} \mathrm{C}$; the two data sets were refined separately. The X-ray results in Table 1 have been interpolated to correspond to $-140^{\circ} \mathrm{C}$ assuming a linear temperature dependence. The Table gives the difference Δ (defined as X-ray parameter minus neutron parameter) followed by $|\Delta| / \sigma$ where σ is the combined standard deviation defined as

$$
\sigma=\left(\sigma_{\text {X-ray }}^{2}+\sigma_{\text {neutron }}^{2}\right)^{1 / 2}
$$

The agreement between the positional parameters is satisfactory; the only error greater than twice the combined standard deviation is for the y coordinate of $\mathrm{C}(1)$. The hydrogen atom positions were not refined in the X-ray study; they were constrained to take the values found in the present neutron study. This should not have any appreciable effect on the heavy atom parameters.

Table 3. Bond lengths (\AA) and angles

(a) Bond lengths

Distances in square brackets are corrected for thermal riding motion.
$\mathrm{C}(1)--\mathrm{O}(1)$
$\mathrm{C}(1)-\mathrm{O}(2)$
$\mathrm{C}(1)--\mathrm{C}(2)$
$\mathrm{C}(2)--\mathrm{H}(2)$
$\mathrm{C}(2)--\mathrm{H}(3)$
$\mathrm{C}(2)--\mathrm{H}(4)$
$\mathrm{O}(1)-\cdots \mathrm{H}(1)$
$\mathrm{O}(2) \cdots \mathrm{H}(1)$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$
$\mathrm{O}(2) \cdots \mathrm{H}(2)$
$\mathrm{C}(2) \cdots \mathrm{O}(2)$

Neutron	X-ray*
$1.321 \quad(7)[1.330]$	$1.319(6)$
$1.206(8)[1.215]$	$1.226(5)$
$1.501(7)$	$(7)[1.139]$
$1.078(14)[1.479(7)$	
$1.050(20)[1.19]$	
$1.052(17)[1.140]$	
$1.011(15)[1.014]$	
$1.642(13)$	
$2.631(8)$	$2.624(5)$
$2.409(15)$	
3.429 (8)	

Fig. 1. Stereoscopic illustration of the structure of acetic acid. Thermal ellipsoids are scaled to include 50% probability. Covalent bonds are filled, hydrogen bonds are open and the short intermolecular $\mathrm{H} \cdots \mathrm{O}$ contacts are indicated by single lines.

Table 3 (cont.)
(b) Angles

	Neutron	X-ray*
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	121.9 (0.5)	$121.3(0.5)^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$113 \cdot 2$ (0.5)	$113.8(0.3)^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)$	124.9 (0.5)	$124.9(0.5)^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$107 \cdot 7$ (0.9)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(3)$	108.9 (1.0)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(4)$	112.3 (1.2)	
$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{H}(3)$	111.3 (1.9)	
$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{H}(4)$	108.1 (1-9)	
$\mathrm{H}(3)-\mathrm{C}(2)-\mathrm{H}(4)$	108.6 (2.0)	
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{H}(1)$	$110 \cdot 5$ (0.8)	
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(2)$	$164 \cdot 8(1 \cdot 0)$	
$\mathrm{C}(1)-\mathrm{O}(2) \cdots \mathrm{H}(1)$	$129 \cdot 1$ (0.6)	
$\mathrm{C}(2)-\mathrm{H}(2) \cdots \mathrm{O}(2)$	$157 \cdot 4(1 \cdot 3)$	
$\mathrm{C}(1)-\mathrm{O}(2) \cdots \mathrm{H}(2)$	116.8 (0.6)	

* The results of Nahringbauer (1970) interpolated to $-140^{\circ} \mathrm{C}$.

Discussion of the structure

The structure is illustrated in Fig. 1. Bond lengths and angles are given in Table 3 and in Fig. 2. The acetic acid molecules are joined by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming infinite chains. A description and discussion of the heavy atom geometry has been given by Nahringbauer and the discussion here will therefore deal mainly with the hydrogen atoms.

The acetic acid molecule

The heavy atoms of the acetic acid molecule are coplanar and the hydroxyl hydrogen atom $H(1)$ does not deviate significantly from the plane. The equations for three least-squares planes calculated according to Hamilton (1961) are listed in Table 4. The deviations of all atoms in a given acetic acid molecule and of certain atoms in a neighboring molecule in the same hydrogen bonded chain are also listed.

The conformation of the methyl group can be seen from Fig. 3. The torsion angle $\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(1)=\mathrm{O}(2)$ is $-6.3(1.6)^{\circ}$. A similar conformation exists in the higher aliphatic carboxylic acids, where in almost every case the torsion angle $\mathrm{C}_{\beta}-\mathrm{C}_{\alpha}-\mathrm{C}=\mathrm{O}$ is found to be close to zero (Kanters, Kroon, Peerdeman \& Schoone, 1967; Dunitz \& Strickler, 1968).

The mean uncorrected $\mathrm{C}-\mathrm{H}$ bond length is 1.060 (10) \AA. This value is significantly shorter than the commonly accepted value of $1.09 \AA$. It is clear from Fig. 3 that the methyl group is undergoing a large amplitude torsional vibration about the C-C bond. The root-meansquare displacements along the principal axes of the thermal ellipsoids are given in Table 5. A correction for thermal riding motion (Busing \& Levy, 1964) where the hydrogen atoms are assumed to 'ride' on the carbon atom leads to bond lengths which are clearly too long

Table 4. Least-squares planes for acetic acid and distances of atoms from these planes
Equations for the planes are of the form $A x+B y+C z-D=0$, where x, y, z are fractional coordinates of the unit cell axes a, b and c, and D is the distance of the plane from the origin in \AA. Atoms not in the asymmetric unit are specified by a subscript as explained in Table 5.

	Atoms defining plane
I	$\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1), \mathrm{H}(1)$
II	$\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1), \mathrm{C}(2), \mathrm{H}(1)$
III	$\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1), \mathrm{C}(2)$

Displacements from plane (\AA)

	Plane I	Plane II	Plane III
	$-0.004(6)$	$-0.005(6)$	$0.002(6)$
$\mathrm{O}(1)$	$0.00(7)$	$0.002(7)$	$0.000(7)$
O()	$0.004(6)$	$-0.003(6)$	$-0.003(6)$
$\mathrm{C}(1)$	$0.031(1)$	$0.004(6)$	$0.001(6)$
$\mathrm{C}(2)$	$0.009(11)$	$0.022(11)$	0.031
$\mathrm{H}(1)$	0.159	0.128	0.19
$\mathrm{H}(2)$	-0.870	-0.902	-0.905
$\mathrm{H}(3)$	0.829	0.796	0.794
$\mathrm{H}(4)$	0.629	0.626	0.613
$\mathrm{O}(1)_{5553}$	-0.148	-0.179	-0.197
O()$_{5553}$	0.403	0.384	0.366
$\mathrm{C}(1)_{553}$	0.910	0.889	0.865
$\mathrm{C}(2)_{5553}$	0.302	0.298	0.289
$\mathrm{H}(1)_{5553}$			

(see Table 3). Such overcorrection has been noted earlier for a methyl group undergoing a very large amplitude of vibration about its threefold axis (Sequeira, Berkebile \& Hamilton, 1968).

Table 5. Root-mean-square amplitudes of vibration (in units of $10^{-3} \AA$)

	Axis 1	Axis 2	Axis 3
	O(1)	$129(10)$	$163(11)$
O(2)	$129(11)$	$139(12)$	$201(8)$
$\mathrm{C}(1)$	$119(8)$	$136(8)$	
$\mathrm{C}(2)$	$138(8)$	$159(9)$	$159(7)$
$\mathrm{H}(1)$	$136(16)$	$194(16)$	$224(8)$
$\mathrm{H}(2)$	$147(19)$	$241(19)$	$380(22)$
$\mathrm{H}(3)$	$186(23)$	$245(22)$	$390(27)$
$\mathrm{H}(4)$	$192(20)$	$248(22)$	$425(27)$

Fig. 2. Bond distances and angles.

Fig. 3. The acetic acid molecule viewed along the $\mathrm{C}-\mathrm{C}$ bond. The ellipsoids are scaled to include 50% probability.

Hydrogen bonding

The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond has an $\mathrm{O} \cdots \mathrm{O}$ separation of 2.631 (8) \AA, the H . . . O distance is 1.642 (13) \AA and the $\mathrm{O}-\mathrm{H}$ bond length is $1 \cdot 011(15) \AA$. The hydrogen bond is bent, the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle being $164 \cdot 8(1 \cdot 0)^{\circ}$. In the absence of previously reported neutron diffraction results on monocarboxylic acids there is no accurate information available on the exact geometry of the hydrogen bonds in this class of compound. The O . . O distance agrees closely with earlier reported values for propionic (Strieter, Templeton, Scheuerman \& Sass, 1962), butyric (Strieter \& Templeton, 1962) and valeric acid (Scheuerman \& Sass, 1962), where O . . O distances of $2 \cdot 62-2 \cdot 645 \AA$ were found. The structures of these acids take the form of hydrogen bonded dimers, in contrast with the infinite hydrogen bonded chains in the present structure.

Hamilton (1968) has suggested as a criterion for hydrogen bonding that the distance between the hydrogen atom and the possible acceptor atom be at least $0 \cdot 2 \AA$ shorter than the sum of the van der Waals radii. This sum may be taken as $2 \cdot 6 \AA$ for hydrogen and oxygen (Pauling, 1960), so that any contacts closer than about $2 \cdot 4 \AA$ should be considered as possible hydrogen bonds. An examination of Table 6, which gives a list of close intermolecular contacts, reveals one such contact in addition to the hydrogen bond discussed above. This contact is drawn in Fig. 1 as a single line between the methyl hydrogen $\mathrm{H}(2)$ and the carbonyl oxygen. The $\mathrm{H} \cdots \mathrm{O}$ separation is 2.409 (15) \AA and the corresponding C..O distance is 3.429 (8) \AA; the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle is $157.4(1 \cdot 3)^{\circ}$. Without conclusive spectroscopic evidence this situation should not be regarded as constituting a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, since it is unlikely that the methyl group has sufficient proton-donor ability to form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (cf. Allerhand \& Schleyer, 1963).

Table 6. Short intermolecular distances
All intermolecular distances involving hydrogen atoms $\leq 3.0 \AA$ and not involving hydrogen atoms $\leq 3 \cdot 5 \AA$, are listed. Atoms not in the asymmetric unit are accompanied by a subscript. The four-digit subscript indicates how the atomic parameters can be derived from the corresponding atom in the asymmetric unit. The first three digits code a lattice translation, e.g. 564 means a translation of $(5-5) a+(6-5) b+(4-5) c$ or $(b-c)$. The fourth digit specifies one of the following operations:

Table 6 (cont.)

$\mathrm{C}(2) \cdots \mathrm{H}(3)_{5652}$	$2.951(20)$
$\mathrm{H}(1) \cdots \mathrm{H}()_{5443}$	$2.598(20)$
$\mathrm{H}(1) \cdots \mathrm{H}(2)_{541}$	$2.991(25)$
$\mathrm{H}(2) \cdots \mathrm{H}(3)_{5652}$	$2.699(25)$
$\mathrm{H}(2) \cdots \mathrm{H}(4)_{5651}$	$2.818(32)$
$\mathrm{H}(3) \cdots \mathrm{H}()_{5642}$	$2.622(27)$
$\mathrm{H}(3) \cdots \mathrm{H}(4)_{5651}$	$2.634(31)$

I would like to thank Dr Walter C. Hamilton for the facilities put at my disposal and for his helpful advice. I am also indebted to Sam J. La Placa for his invaluable assistance during the most critical phase of the experiment and to Prof. Ivar Olovsson for his interest in this work.

References

Allerhand, A. \& Schleyer, P. von R. (1963) J. Amer. Chem. Soc. 85, 1715.
Beaucage, D. R., Kelley, M. A., Ophir, D., Rankowitz, S., Spinrad, R. J. \& Norton, R. van (1966). Nucl. Instrum. Methods 40, 26.
Bllz, W., Fischer, W. \& Wünnenberg, E. (1930). Z. Physik. Chem. A151, 13.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Coppens, P. (1969). Acta Cryst. A25, 180.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71.

Dunitz, J. D. \& Strickler, P. (1968). Structural Chemistry and Molecular Biology, Edited by A. Rich \& N. Davidson, p. 595. San Francisco and London: W. H. Freeman.
Hamilton, W. C. (1961). Acta Cryst. 14, 185.
Hamilton, W. C. (1968). Structural Chemistry and Molecular Biology, Edited by A. Rich \& N. Davidson, p. 466. San Francisco and London: W. H. Freeman.
Hamilton, W. C. (1969). Acta Cryst. A25, 194.
Johnson, C. K. (1965). ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Jones, R. E. \& Templeton, D. H. (1958). Acta Cryst. 11, 484.

Kanters, J. A., Kroon, J., Peerdeman, A. F. \& Schoone, J. C. (1967). Tetrahedron, 23, 4027.

Nahringbauer, I. (1970). Acta Chem. Scand. 24, 453.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Rudman, R. \& Godel, J. B. (1969). J. Appl. Cryst. 2, 109.
Scheuerman, R. F. \& Sass, R. L. (1962). Acta Cryst. 15, 1244.

Sequeira, A., Berkebile, C. A. \& Hamilton, W. C. (1968). J. Mol. Structure, 1, 283.

Strieter, F. J. \& Templeton, D. H. (1962). Acta Cryst. 15, 1240.
Strieter, F. J., Templeton, D. H., Scheuerman, R. F. \& Sass, R. L. (1962). Acta Cryst. 15, 1233.

Acta Cryst. (1971). B27, 898

Hydrogen-Bond Studies. XLV. The Crystal Structure of $\mathbf{H C l O}_{4} .2 \frac{1}{2} \mathbf{H}_{2} \mathrm{O}$

By Jan Almlöf, Jan-Olof Lundgren and Ivar Olovsson
Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 1 June 1970)

Abstract

The crystal structure of $\mathrm{HClO}_{4} .2 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ has been determined from three-dimensional single-crystal X-ray diffraction data recorded at $-188^{\circ} \mathrm{C}$. The structure is monoclinic with space group $P 2_{1} / c$ and contains eight formula units. The cell dimensions are $a=10 \cdot 960, b=7 \cdot 132, c=15 \cdot 167 \AA, \beta=124 \cdot 55^{\circ}$. The structure contains $\mathrm{H}_{2} \mathrm{O}$ molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$ions interlinked by hydrogen bonds to form infinite helices. These helices form layers both by hydrogen bond interlinkage and by hydrogen bonding to the perchlorate ions. The two independent perchlorate ions show only minor deviations from tetrahedral symmetry, and the mean $\mathrm{Cl}-\mathrm{O}$ distances are 1.435 and $1.439 \AA$.

Introduction

This work is part of a systematic study of the hydrates of strong acids being carried out at this Institute aimed at investigating the hydration of the proton in the solid state. In $\mathrm{HBr} . \mathrm{H}_{2} \mathrm{O}$ (Lundgren, 1970), $\mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ (Yoon \& Carpenter, 1959), $\mathrm{HClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Lee \& Carpenter, 1959; Nordman, 1962), $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Taesler \& Olovsson, 1968, 1969) the proton occurs as an $\mathrm{H}_{3} \mathrm{O}^{+}$ion, whereas $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$has been found in $\mathrm{HCl} .2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HCl} .3 \mathrm{H}_{2} \mathrm{O}$ (Lundgren \& Olovsson, $1967 a, \quad b), \quad \mathrm{HClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Olovsson, 1968), $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Kjällman \& Olovsson, 1971), and in
$\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Williams \& Peterson, 1969a). The investigations of $\mathrm{HClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Almlöf, 1971) and $\mathrm{HBr} .4 \mathrm{H}_{2} \mathrm{O}$ (Lundgren \& Olovsson, 1968) have indicated the existence of $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$. The latter compound has also been suggested to contain $\mathrm{H}_{9} \mathrm{O}_{4}^{+}$ions. The present investigation of $\mathrm{HClO}_{4} \cdot 2 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ is based on singlecrystal X-ray diffraction data recorded at $-188^{\circ} \mathrm{C}$.

Experimental

A solution with the molar ratio $\mathrm{H}_{2} \mathrm{O}: \mathrm{HClO}_{4}=2.50$ was prepared by diluting analytical grade perchloric acid (ca. 73%) with distilled water and analysed by titration

[^0]: * Part XLIII: Acta Chem. Scand. (1971), 25, 189.
 \dagger Research performed under the auspices of the U.S. Atomic Energy Commission.
 \ddagger Present address: Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala 1, Sweden.
 § Numbers in parenthesis here and throughout this paper are the estimated standard deviations in the least significant digits.

